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Interactions betweenmuscle stem cells, mesenchymal-
derived cells and immune cells in muscle homeostasis,
regeneration and disease
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Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear

cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and

from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem

cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the

functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic

muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will

summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and

anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical

exercise.
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Facts

� In skeletal muscle regenerative disorders (e.g., muscular

dystrophies) as well as age (sarcopenia)- or disease

(cachexia)-related decline in muscle mass and function,

there is an impairment of the regenerative potential, which

correlates with a progressive replacement of contractile

mass with fibrotic and adipose tissue.

� Mesenchymal-derived cells, such as Sca1+/PDGFRα+

fibro-adipogenic progenitors (FAPs), reside in the

interstitial space in skeletal muscle and can contribute

either to muscle regeneration or to fibrosis and fat

deposition.

� Functional interactions between muscle stem cells

(satellite cells), FAPs and cells from the inflammatory

infiltrate have recently been reported and appear to

determine the ability of skeletal muscle to regenerate or

undergo fibro-adipogenic degeneration.

� Ectopic adipose tissue in skeletal muscle is asso-

ciated with impaired insulin sensitivity and muscle

function.

Open Questions

� Are the interactions between satellite cells, FAPs and

inflammatory cells relevant in the pathogenesis of neuro-

muscular diseases?

� Are the interactions between satellite cells, FAPs and

inflammatory cells implicated in the functional decline of

muscles during cachexia and sarcopenia?

� Are the interactions between satellite cells, FAPs and

inflammatory cells implicated in the control of muscle

growth and homeostasis during exercise?

� Does an increased ectopic fat deposition in skeletal muscle,

from adipogenic differentiation of FAPs, alter the systemic

metabolic profile?

� Could the functional network between satellite cells,

FAPs and inflammatory cells provide potential targets

for pharmacological interventions toward promoting

compensatory regeneration in muscular disease, coun-

tering age-related or cachexia-mediated muscle atrophy,

or improving the response to exercise and the metabolic

profile?
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Reduction of muscle mass is typically observed at late stages

of many neuromuscular diseases, during aging, inactivity and

chronic systemic disorders (i.e., diabetes, cancer, rheumatoid

arthritis (RA) and chronic obstructive pulmonary disease

(COPD)) and is closely associated with impairment of

metabolic control collectively worsening the recovery of the

primary disease.1–4

The endogenous regenerative potential of skeletal muscle

provides a compensatory response against muscle loss;

however, this response cannot support continuous muscle

regeneration in chronic conditions. The regenerative capacity

of skeletal muscle relies on muscle stem cells (satellite cells

(SCs)), which proliferate in response to exercise to facilitate

muscle growth and remodeling, or following myotrauma to

repair the injured muscle.5–8 Recent works identified

mesenchymal progenitor cells termed fibro-adipogenic pro-

genitors (FAPs) that provide functional support to SCs;

however, these cells might also turn into a source of ectopic

fat deposition and fibrosis in skeletal muscle.9–15 Although

their role in humans is not fully understood, a cellular

population phenotypically and functionally similar to mouse

FAPs has been isolated from human muscle.14 FAP activity

is regulated by physical and functional interactions with

myofibers and SCs10 as well as cytokines released from

innate immune cells.11 Moreover, key regulatory intracellular

networks that control FAP lineage and function in regenerating

muscles of normal and dystrophic mice have recently been

reported.16

This review summarizes the current knowledge on the role

played by the cellular network composed by SCs, FAPs and

the inflammatory infiltrate (e.g., macrophages and eosino-

phils) during physiological and pathological perturbations of

muscle homeostasis.

Muscle Stem Cell, SC and FAP niche, Interaction with

Immune Cells and Contribution to Intramuscular Adipose

Tissue

Maintenance of muscle mass depends on the integrity of the

regenerative machinery, which is composed of SCs and other

mononucleated cell types,17–23 although, the direct contribu-

tion of SCs to myofiber hypertrophy and maintenance remains

controversial.19,24–26

SCs are located beneath the basal lamina – the anatomical

niche – and their activity is regulated by interactions with

cellular components of the 'functional niche' – FAPs, immune

as well as vessel-derived cells (Figures 1 and 2).

FAPs are non-myogenic, interstitial, mesenchymal progeni-

tors that can be isolated by virtue of the absence of SC surface

markers and by the expression of platelet-derived growth

factor receptor alpha (PDGFRα)+9 or stem cell antigen 1

(Sca1)+10 (Figure 3). When isolated from regenerating

muscles FAPs exhibit the remarkable property of promoting

SC cell proliferation and differentiation in co-culture.9,10

However, FAPs also possess an intrinsic adipogenic and

fibrogenic potential manifested in culture by exposure to

adipogenic conditions,9,10 indicating a potential contribution of

FAPs to fibrotic and adipose accumulation in diseased

muscles (Figure 2). In addition to formation of ectopic fat

and fibrous tissue, abnormal bone formation also occurs

under some circumstances in muscle, termed heterotopic

ossification,27 raising the possibility that the term FAPs does

not fully cover their potential roles.28

Two recent studies have identified both the anatomical niche

and paracrine cues from innate immune cells as signals that

regulate FAP lineage and activity.9,11 For instance, IL-4

released by eosinophils has been shown to be a key mediator

of FAP fate (Figure 2).11,15 Eosinophils provide an abundant

source of IL-4/IL-13 in different conditions.11,29–31Chemotaxis

of eosinophils to skeletal muscle and release of IL-4/IL-13 is

observed in different conditions, such as muscle injury11 or

exercise,29 suggesting that substantial (i.e., chemically

induced muscle damage) or subtle (i.e., skeletal muscle

exercise) perturbations of skeletal muscle homeostasis may

both stimulate FAP-mediated activation of SCs. Inactivation of

IL-4-mediated signaling or eosinophil chemotaxis stimulates

the adipogenic differentiation of FAPs.11,15 Likewise, interac-

tions between FAPs and myofibers or SCs also regulate the

FAP-mediated adipogenesis.9,10 Finally, FAP activity is regu-

lated by growth factors (e.g., insulin-like growth factor 1

(IGF-1), hepatocyte growth factor (HGF)), follistatin and nitric

oxide (NO), which are secreted from FAPs themselves,

endothelial cells and M1/M2 macrophages11,32–38 (Figure 2).

In turn, FAPs provide a source of cytokines that regulate SC

activity. For instance, FAP-derived IL-6 (LM and PLP

unpublished data) activates the signal transducer and

activator of transcription 3 (STAT3) in SC.10,39–41 This pathway

is involved in SC activation and its dysregulation appears

implicated in age-dependent reduced regenerative capacity.42

FAPs also provide a substantial source of follistatin secretion,

with a tenfold higher follistatin expression in FAPs compared to

SCs.12 Follistatin is the physiological antagonist of the

negative regulator of muscle mass, myostatin12,43,44 and

besides preventingmyofiber atrophy, it may influencemyofiber

regenerative capacity through directly targeting the SCs.

Interestingly, in aged humans the reduced SC proliferation

following exercise is associated with increased co-localization

ofmyostatin in SCs of agedmuscle.21Thus, the FAP-mediated

release of follistatin may play a role in SC regulation in rodent

as well as in human muscle.

These results suggest that FAPs from regenerating muscles

retain a functional bipotency, whose resolution is dependent

on anatomical factors (e.g., interactions with myofibers, other

cell types or extracellular matrix), systemic factors and

local concentrations of soluble cues (such as the signals

released by the niche). Dysfunctional FAP regulation by

alterations of these regulatory conditions may severely

deteriorate muscle health, affecting both muscle function

and metabolism.11,15,45,46 As for the latter, FAPs may

influence the metabolic activity of the muscle since ectopic

adipocytes are associated with impaired insulin sensitivity,

metabolic syndrome and type 2 diabetes (T2D).47–49 In this

regard, it is intriguing to speculate as to what extent systemic

circulating factors may alter FAP differentiation, including

high glucose conditions shown to induce adipogenesis in

muscle-derived stem cells.50 Moreover, deregulated FAP

activity can contribute to the increased intramuscular

adipose tissue (IMAT) observed in aged muscles51

and in patients with RA,52 COPD53 and cancer

cachexia (Figure 5).54 Thus, FAPs may hold a dual role in
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which they provide important paracrine stimuli to support SC

function in healthy muscle, while contributing to ectopic

adipose accumulation in pathological conditions48,55,56

(Figures 2 and 5), thereby leading to reduced insulin

sensitivity48,57 and decreased muscle function.58,59

Role of SCs, FAPs and immune cells in neuromuscular

disorders. Most neuromuscular disorders are initially

alleviated by the regenerative potential of skeletal muscles.

For instance, in Duchenne muscular dystrophy (DMD),

compensatory regeneration at earlier stages of disease tends

to counter the degeneration of dystrophin-deficient myofibers.

While, at least in mouse models of muscular dystrophy, this

reactive regeneration resembles muscle repair following

injury, as the disease progresses the asynchronous waves

of regeneration and the changes in niche caused by chronic

regeneration eventually bias the repair toward pathogenic

fibrosis and fat deposition.60,61

Optimal regeneration entails a sequence of events that

ensures temporally coordinated interactions between SCs,

FAPs and cells of the immune system. An initial activation of

resident immune cells and the inflammatory infiltrate,62 is

typically followed by the sequential activation of FAPs and

SCs.63,64 Progressive impairment of the interplay between

SCs, FAPs and immune system is emerging as a key event in

switching regeneration from compensatory to pathogenic.65,66

In particular, FAPs appear to play a central role in this

switch.59,67

Recent studies have revealed that FAPs from dystrophic

muscles of mdx mice – the DMD mouse model – retain a

phenotypic and functional bipotency, as they can either

support compensatory regeneration at early stages of

disease progression, or mediate fibrotic and fat

deposition (Figure 4).12,16 This alternative phenotype is

regulated at the epigenetic level by a network formed by

muscle-specific microRNA (the myomiRs miR-1.2, miR-133

Figure 1 (a) Schematic illustration of localization of satellite cell, FAP, macrophage and eosinophil in relation to muscle fibers and capillaries. Compare with image in b. Sizes
of individual cells are not drawn to scale. (b) Immunohistochemical staining of human muscle biopsy cross-section with antibodies against Pax7 (brown), laminin (green) and
MHCI (red). Nuclei are stained blue with DAPI
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and miR-206) that target key subunits of the SWI/SNF

chromatin-remodeling complex. In particular, expression of

myomiRs correlates with the ability of FAPs to support SC-

mediated myogenesis and to adopt a myogenic phenotype at

the expense of the fibro-adipogenic lineage.16 This outcome is

typical of compensatory regeneration at early stages of

disease progression and likely reflects the action of cues from

a regeneration-conducive SC niche that resolve FAP bipo-

tency into the pro-myogenic phenotype. Saccone et al.
16

showed that myomiRs selectively target two variants of the

BAF60 subunit of SWI/SNF complex (BAF60A and B), which

activate chromatin remodeling at fibrotic and adipogenic loci.

This leads to the selection of the alternative variant – BAF60C

– which promotes chromatin remodeling at muscle loci68 and

mediates FAP commitment to the myogenic lineage16

(Figure 4).

Importantly, this intracellular network is controlled by

histone deacetylases (HDACs),69 whose activity is consti-

tutively active in DMD muscles.70 In normal conditions

(i.e., physiological regeneration) reversible HDAC-mediated

repression of myomiR allows the expression of BAF60A

and B variants and supports maintenance of bipotency in

FAPs. In dystrophic muscles, constitutive HDAC activity

represses BAF60C and myomiR and favors the expression

of BAF60A and B, which direct the fibro-adipogenic

phenotype of FAPs. Interestingly, this dynamic HDAC-

mediated regulation of phenotypic and functional bipotency

of FAPs is observed at early, but not late stages of disease

progression in mdx mice, and accounts for the restriction of

the beneficial effects of HDAC inhibitors at early but not late

stages of disease.12

Future studies should establish how FAP bipotency, and

relative resolution, is regulated by cues from the regenerative

microenvironment and should elucidate the signals that

controls reciprocal interactions between FAPs, immune

system and SCs within physiological and pathological

contexts. For instance, it would be interesting to evaluate the

contribution of FAPs to the excessive levels of transforming

growth factor-β2 (TGFβ2), which are induced by elevated

canonical Wnt signaling in dystrophic muscles and affect the

behavior of SCs.71

As the human counterpart of FAPs has been identified as

PDGFRα+ cells in healthy and diseased muscles,14 the

functional and molecular characterization of human FAPs

can provide novel interesting targets for the development of

pharmacological treatment of muscular diseases.

Role of SCs, FAPs and immune cells during ageing and

metabolic dysfunctions. Aging is associated with an

accelerated loss of skeletal muscle mass (sarcopenia)

and with a reduced regenerative capacity of the muscu-

lature, leading to a loss of strength and function.72–74

In rodents, the aging muscle and SC niche has been shown

to disrupt SC function and myofiber regenerative

capacity.75–78 Local changes in the SC milieu include a

number of events that can alter signaling in SCs. For

instance, constitutively elevated activation of p38 kinase,

STAT3 activity and reduced Notch signaling has been

observed in aged SCs.46,47,79–82 Likewise, increased TGFβ

activity and induction of the cyclin-dependent kinase

inhibitors associated to inhibition of cellular proliferation,

such as p15, p16 and p21, have been reported as potential

triggers of SC senescence.79–81

The events described above likely depend on extensive

changes in the SC niche, including deregulated activity and

number of FAPs or additional cellular components, such as

fibroblasts and adipocytes,74 that originate from FAP differ-

entiation. In a mouse model of young and old mice sharing the

circulatory system (heterochronic parabiosis model) aged

SCs were rejuvenated by exposure to a young systemic
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environment suggesting that the tissue-specific stem cells

retain their proliferative potential, but that the aged systemic

environment prevents full activation.76 These findings have

been sparsely investigated by in vitro studies on human

primary cells, leading to contradictory results.80,82 Age-

induced changes in the systemic milieu include reduced local

capillary network and endothelial cell apoptosis/senescence,

which can lead to reduced secretion of SC stimulatory factors,

impaired chemotaxis of immune cells and collectively a more

negative balance between positive and negative regulators of

SC activity. Recent evidence points to the importance of

systemic concentrations of the circulating proteins such as

oxytocin83 or growth differentiation factor 11 (GDF11),84

although it is currently controversial whether GDF11 levels

decrease or increasewith aging, aswell as the relative efficacy

of GDF11 supplementation in countering the functional

decline of aged muscle and SCs.85

Interestingly, sarcopenia in rodents is not further acceler-

ated during conditional ablation of Pax7+ SCs.25 However,

despite the lack of direct effects on muscle fiber size, ablation

Figure 3 Mononuclear cell isolation procedure from skeletal muscle composed of mechanical and enzymatic digestion, filtration, blocking, antigen labeling and finally multiple
parameter FACS to sort out selected cell populations. (A) Representative plots showing FACS strategy to sort lineage-negative (Ter119− CD45− CD31−) SCs (α7 integrin+) and
FAPs (Sca1+) as well as lineage-positive macrophages (MPs, CD11b+ F480+) from skeletal muscle of healthy (a) and mdx (b) mice. (B) Representative images of adipogenic (Oil
Red O (a)) and fibrogenic (α-smooth muscle actin (b)) phenotype of FAPs during differentiation
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of Pax7+ cells during sarcopenia generated increased levels of

collagen deposition, preferentially in fast muscles,25 which

could derive from fibrogenic differentiation of FAPs. In human

skeletal muscle in vivo the SC content in type II muscle fibers is

selectively reduced with aging, whereas the number of SCs in

type I fibers remains similar to young individuals, following the

pattern of a selective atrophy of type II muscle fibers.86,87

Thus, while SC content does decrease during sarcopenia in

both rodent and human skeletal muscle, it is not yet entirely

defined to what extent the decrease in SC content can

account for muscle atrophy or vice versa. Although this

selective deterioration of type II fibers and their SC content in

human skeletal muscle is partly reversible by resistance

training,87,89 the responsiveness of SCs to a single bout of

resistance exercise is reduced with aging.21,88 Even lifelong

(endurance) exercise does not seem to prevent the decre-

ment in type II fiber size or SC content compared to type I

fibers.90 However, the amount of adipose infiltration in the old

untrained muscle was larger than in the trained groups

(unpublished observation, URM). It is therefore intriguing to

speculate that changes in the muscle microenvironment or

systemic environment related to inactivity or ageing can

condition FAP phenotype and ability to release important

paracrine cues to SCs and myofibers to support regeneration

and muscle growth.

In addition to muscle atrophy, inactivity and ageing are

commonly associated with increased adiposity, together

leading to metabolic dysfunctions such as dyslipidemia,

decreased insulin sensitivity, hyperglycemia and an increased

risk of developing diabetes mellitus (i.e., T2D). Since skeletal

muscle is the most abundant tissue of the body for glucose

disposal, muscle sensitivity to insulin action is essential in

development of whole body insulin resistance and

hyperglycemia.91 Moreover, patients with T2D show a greater

decline in muscle mass, muscle strength and functional

capacity with aging.92 A common observation in conditions

associated with impaired skeletal muscle insulin sensitivity is

accumulation of ectopic lipids within (intracellular) and

between (extracellular) skeletal muscle fibers48,56,57,93,94

(as illustrated in Figure 1), which is linked to reduced insulin

sensitivity48,57,94 and decreased muscle function.58 Paradoxi-

cally, endurance athletes also display an elevated level of

intracellular lipid (termed athletes-paradox), presumably

serving as energy source during physical activity,95 although

they also exhibit increased insulin sensitivity, as compared

to healthy untrained subjects.96,97 In contrast, the IMAT

(i.e., adipose tissue within a muscle but located outside

the myofiber) is to our knowledge not increased in athletes

and is associated with reduced insulin sensitivity in both

healthy47 and obese48 subjects as well as in acromegaly

patients.49 Although the origin of IMAT is not yet known,56

murine muscle-derived stem cells have been shown to

undergo adipogenic differentiation upon exposure to

elevated glucose levels in vitro,50 providing a potential

link between adipocyte accumulation and the systemic

milieu. Moreover, while previous work proposed that

IMAT can originate from trans-differentiation of myogenic

stem cells,50,56,98 increasing evidence suggests that

FAPs could constitute the mesenchymal stem cells respon-

sible for IMAT accumulation in skeletal muscle.12,14,99,100

In addition, FAP-derived adipocytes may have reduced

insulin sensitivity compared to conventional adipocytes,

suggesting that accumulation of FAP-derived adipocytes

may contribute to a compromised peripheral insulin

sensitivity.101

Presently, the role of FAPs and their interplay with SCs,

eosinophils or macrophages in relation to development of T2D

is unknown. However, dysfunctional regulation of FAPs

mediated by changes in IL-4 signaling may influence skeletal

muscle homeostasis. Interestingly, IL-4 levels have been

reported to be positively associated with insulin sensitivity102

and IL-4 promoter polymorphisms have been associated with

T2D.103 Moreover, IL-4-mediated signaling may prevent

adipogenesis in muscle and adipose tissue.102,104 In white

adipose tissue, IL-4 released from tissue-resident eosinophils

regulates the presence of M2 macrophages,31 which are

positively associated with insulin sensitivity.105 When geneti-

cally depleting IL-4 secreting eosinophils the content of the M2

macrophage phenotype in adipose tissue is reduced and this

is associated with a substantial decrease in glucose tolerance

and insulin sensitivity.31 These changes are less explored in

humans, however, increased expression of the inflammatory

macrophage phenotype marker; CD11c in skeletal muscle of

T2D patients has been reported.106

Figure 4 HDACs control an epigenetic network that determines FAP ability to support either regeneration or fibro-adipogenic degeneration. Inhibition of HDAC induced an
upregulation of BAF60c that is engaged in the SWI/SNF complex leading to an increase of the myomiR expression and ultimately promoting a pro-myogenic phenotype in FAPs
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Reduced insulin sensitivity is often associated with aging107

and in chronic diseases that cause cachexia.108,109 Patients

suffering from cachexia or patients affected by metabolic

syndrome may display elevated levels of glucocorticoids110

that may influence IL-4 secretion. Interestingly, elevated

glucocorticoid levels (such as those reached upon dexa-

methasone treatment) in mice increase the adipogenic

differentiation of FAPs, which is otherwise suppressed through

IL-4-mediated signaling.15 The effect of dexamethasone

treatment on FAP adipogenesis may relate to suppression of

eosinophil release of IL-4111 as suggested by Dong et al.15

Thus, elevated levels of glucocorticoids during disease (either

as medical treatment or endocrine release) could increase

adipocyte accumulation in skeletal muscle through adipogenic

differentiation of FAPs and hereby negatively impact the

insulin sensitivity of skeletal muscle.47,48 Given that steroids

are used in the treatment of many muscular disorders

(including DMD), the interactions between glucocorticoids,

FAP, SCs and cells of the immune system deserve future

investigation.

Role of SCs, FAPs and immune cells in cachexia.

Cachexia consists of an accelerated muscle loss that is

associated with chronic diseases, complicates their recovery

and is an independent predictor of morbidity and

mortality.112–114 Skeletal muscle wasting is a common

phenomenon in cancer patients,115–119 and cancer-related

muscle loss affects up to 80% of patients with advanced

cancer, leading to poorer prognosis, reduced treatment

response and increased risk of complications during surgery

and chemotherapy. Ultimately, cachexia accounts for 420%

of all cancer-related deaths.120–124

Since both SCs and FAPs may influence muscle home-

ostasis and growth, their interactions can be implicated in

cachexia. In rodents, cancer cachexia is associated with

muscle damage and deregulation of Pax7 expression in SCs

and interstitial cells, through increased NF-κB activity,125

suggesting that NF-κB may contribute to muscle wasting in

cancer.125 In muscle biopsies from pancreatic cancer patients

with accelerated weight loss, an increased number of Pax7+

cells was observed, indicating that cancer cachexia is

associated with an expansion of the myogenic precursor

pool.125 Expansion of the Sca1+ cell population that resemble

mouse FAPs, was also observed in cachectic muscles from

tumor-bearing mice. Interestingly, this Sca1+ population

preferentially adopt the myogenic lineage under the influence

of tumor environment, by expressing the SC-specific tran-

scription factor Pax7, which is induced by serum factors from

cachectic mice and patients, in an NF-κB-dependent manner;

however, completion of differentiation was also inhibited by the

persistent expression of Pax7.125 Restoring the myogenic

potential of these cells by Pax7 downregulation or by ectopic

expression of MyoD, promoted cell differentiation and fiber

fusion and reversed muscle wasting.125 These results reiter-

ate the concept that Sca1+ cells have a latent myogenic

potential that can be induced by environmental signals, for

example, the elevated levels of cytokines from systemic

inflammation. Since, Pax7 expression is regulated by

inflammation-induced signals,126 these data reveal again the

important interactions between the immune system and FAPs

in the control of muscle regeneration. However, it is important

to note that Sca1+ cells might only account for a subpopulation

of FAPs, or even a distinct population of cells induced in tumor-

bearing conditions. A recent study not only identified stromal

cells by expression of fibroblast activation protein α (but also

uniformly expressing FAP markers such as CD90, PDGFRα

and Sca1), and observed a depletion of these stromal cells to

be underlying the cancer-induced cachexia.127 Specifically,

these stromal cells appeared to maintain muscle size through

paracrine secretion of follistatin, which in turn reduced the

muscle expression of ubiquitin ligases such as atrogin-1 and

muscle RING-finger 1 (MuRF1) involved in muscle protein

breakdown.127 It remains to be investigated if factors released

directly by the tumor, alterations in immune cell content/

function or other mechanisms may underlie the depletion of

the stromal cells in skeletal muscle during cancer cachexia. If

these stromal cells are indeed FAPs, an alternative explana-

tion for the cell content depletion during cachexia may relate to

an increased adipogenic differentiation of the FAPs. In this

regard the progression of cachexia has been associated with

an increased amount of intramuscular lipid droplets,54 and

although the source of these is not identified they could

originate from FAPs.

Multiple chronic diseases are also associated with elevated

systemic inflammation including RA.128–133 In RA patients,

loss of muscle strength is associated with RA duration rather

than with chronological age, in contrast to the decline with age

observed in the general population.134 This indicates a

disease-related effect on muscle strength that surpasses the

effect of aging. Increased IMAT, potentially originating from

FAPs, is observed in the muscle of RA patients and this

reduction in muscle density associates with greater joint

destruction.52 Furthermore, type II fiber atrophy in RA patients

has been reported,135 but compared to patients with osteoar-

thritis the absolute numbers of SC136 and their in vitro

regenerative potential137 were not different in RA patients.

COPD is another frequent cause of disease-related

cachexia and premature death worldwide.138 COPD is often

accompanied by pronounced muscle wasting (atrophy of both

type I and II fibers has been reported139) and metabolic

dysfunction.138,140 Notably, the loss of muscle mass is an

independent predictor of mortality in COPD patients.1,112 The

alterations in immune cell function and the chronic inflamma-

tory condition is believed to be a substantial contributor to the

loss of muscle mass along with an impaired regenerative

capacity and cellular apoptosis.138,140 SC content is not

altered in themuscles of COPD patients compared to controls;

however, primary SCs isolated from COPD patients displayed

a delayed activation in culture and decreased expression of

myosin heavy chain expression during myotube formation

compared to controls.141 Interestingly, the increased number

of central nuclei observed in the muscles of COPD patients

with preserved muscle mass, as compared to those who lost

muscle mass,141,142 suggests that the ability of the muscle to

regenerate could attenuate the extent of COPD-related

cachexia.

Collectively, the potential role for SC and FAPs in relation to

muscle loss due to chronic inflammatory diseases is a matter

of current and future investigations (Figure 5).
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Exercise as a Strategy to Improve Muscle Health –

Stimulation of SC and FAPs by Exercise

Skeletal muscle is a highly plastic tissue that adapts to stimuli,

by proportionally adjusting mass and strength (resistance

training) or aerobic capacity (endurance training) in response

to exercise. Both acute and prolonged resistance exercise

stimulates the proliferation of SCs in healthy subjects,143–147

and even non-hypertrophying endurance exercise can induce

proliferation of at least some SC populations.7 Although the

potential impact of different training modalities on the immune-

FAP-SC network are described separately below, it is

important to note some remarkable differences, and the

relative impact on the network, between physical exercise and

the pathological conditions described in the previous para-

graphs. For instance, in most pathological conditions FAPs are

activated by physical injury, which triggers extensive changes

in the microenvironment, (e.g., myofiber degeneration in

muscular dystrophies) or by elevated systemic concentration

of inflammatory cytokines (e.g., cachexia); by contrast, during

training most of these signals are absent – except for the case

of strenuous exercise – and the predominant changes

occurring in exercised muscles are of metabolic (redox

alterations) or biomechanical (contraction/relaxation cycles)

nature. As FAPs occupy an interstitial position they are a great

candidate as cell types that sense these changes and transmit

them to SCs via specific cues. In this regard, recent work

reported that SIRT1, a NAD(+)-dependent HDAC known as

redox and nutrient sensor, promotes the metabolic switch from

fatty acid oxidation to glycolysis during the SC transition from

quiescence to proliferation.148 Moreover, SIRT1 regulates

autophagic flux in SCs to cope with the high bioenergetic

demands during the activation process.149 Finally, SIRT1

connects changes in SC metabolism with changes in the

transcriptional machinery towardmyogenic commitment of the

SC.148 This reprogramming of cellular metabolism decreases

intracellular NAD(+) levels and the activity of the HDACSIRT1,

leading to elevated H4K16 acetylation and activation of

muscle gene transcription. Future studies should establish

whether SIRT1 is activated by FAP-derived signals.

Resistance and Endurance Training, Muscle Hypertrophy

and Insulin Sensitivity

Although the role of SCs during myofiber regeneration has

been extensively studied and reviewed,8,22,23,150–153 it is

debated whether SCs possess a role in myofiber hypertrophy

in the adult muscle.154,155 In earlier studies, irradiation was

used to ablate SC activity, whereby overload induced

hypertrophy in rodents was prevented,154,156,157 indicating a

direct linkage between SCs and myofiber hypertrophy.

However, a later study opposes this contention by showing

an intact hypertrophic response in myofibers of SC-depleted

muscles in rodents.26 Although these findings from conditional

knockout mice seem to reject the hypothesis that SCs are

essential for hypertrophy, more recent results indicate that the

lack of SCs can attenuate myofiber hypertrophy in the later

phases of an overload period.19 The latter is supported by

other studies suggesting an important role for SC in myofiber

growth and myonuclei accretion.24,158,159 In agreement,

IGF-1, which can accentuate resistance training-induced

muscle hypertrophy,160 may in part act through increased

proliferation and differentiation of SC to support myofiber

growth.161 This is supported by the increased expression of

IGF-1 splice variants in human SCs following eccentric

resistance exercise.162

Figure 5 Schematic illustration showing potential role of FAP-SC and their interplay in muscle: atrophy (as observed with aging and disease), hypertrophy and insulin
sensitivity. IL-4, interleukin-4; IMAT, intramuscular adipose tissue; T2D, type 2 diabetes
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In several human studies, robust increases in the number of

SCs has been shown both acutely21,163,164 and following

prolonged 143,144,165–168 resistance exercise in both young

and old humans.87–89 In contrast, SC proliferation following

resistance exercise may be impaired during ageing and in

patients affected by chronic muscular disorders, with current

evidence suggesting that this impairment originates from

alterations in cues from the SC niche or the systemic

environment.20,21,76,83,88 However, long-term resistance train-

ing can reverse the SC distribution in elderly muscle toward

that of young muscle.169 Knowledge about the regulation of

FAPs in relation to resistance training and hypertrophy is

lacking, but in rodents the involvement of a SC-FAP interplay in

successful muscle regeneration after muscle damage has

been convincingly demonstrated.9,11,28 Although damage/

regeneration is not a prerequisite for resistance training

adaptations,170 the rodent findings combined with human SC

data suggest that SC-FAP interplay may have a central role in

resistance training adaptations (Figure 5). Furthermore,

detraining in elderly is accompanied by an increased amount

of muscle fat infiltration which can be reversed by resistance

training,171 and reducing ectopic fat accumulation may

enhance myofiber anabolic signaling.46 Collectively, this area

awaits further investigation in humans; however, the present

body of data indicates that FAPs may be regulated with

resistance exercise-induced hypertrophy. One mechanism

may relate to the recently identified circulating hormone

Meteorin like, which is secreted from skeletal muscle upon

exercise and triggers IL-4, and IL-13 production by eosinophils

in adipose tissue. These cytokines cause alternative activation

of M2 macrophages29,172 as shown in Figure 2, and are also

involved in the regulation of FAP activity, further providing a

tentative link between exercise, immune cell activation and

FAP regulation.

Endurance exercise increases insulin sensitivity and glu-

cose tolerance,173–176 for example, via increased protein

expression of insulin receptor substrate-1 (IRS-1) and

GLUT4176,177 in skeletal muscle. Although increased energy

expenditure through endurance training reduces accumula-

tion of adipose tissue, insulin sensitivity and glucose tolerance

are improved independent of weight loss.178 The SC response

to endurance training has only been evaluated in a few human

studies, and increased SC numbers are reported in

most,179–181 but not all182 of these, mostly in the absence of

muscle fiber hypertrophy. Recently, hypertrophy of both type I

and IIa fibers was observed following 12 weeks of aerobic

training, with a concomitant increase in SC number only in

type I fibers.181 Furthermore, non-hypertrophying endurance

exercise can induce proliferation of SC populations in hybrid

fibers (type I/II) without effect on the SC content of type I or II

fibers.7 Generally, these data indicate a role for SC prolifera-

tion and turnover in muscle maintenance even in the absence

of fiber hypertrophy, which is in line with the suggested role for

SC-FAP interplay in regulation of a healthy muscle.

Perspectives and Conclusions

FAPs are emerging as a 'cellular filter' between external

perturbations (either local or systemic changes in physical,

metabolic and inflammatory cues) and the effectors of the

muscle regeneration machinery – the SC. Depending on the

nature of the perturbations FAPs appear to adopt specific

phenotypic and functional properties indicating a highly

heterogeneous cell population.183 Thus, FAP heterogeneity

and the dynamic transition from a physiological to compen-

satory or pathological subpopulation appears as a key issue

to investigate in future studies. In particular, the anatomical

derivation of FAPs might reveal important differences.

For instance, in the presence of physical insults, the

ensuing vessel injury or transient ischemia might direct a

composition of FAPs that is phenotypically and functionally

different from cells derived by the expansion of resident

interstitial FAPs.

Overall, the elucidation of the interplay between SCs, FAPs,

their niche and immune cells might have an impact not only in

the discovery of interventions toward restoringmuscle function

and correcting metabolic dysregulation in pathological condi-

tions, but also to improve muscle anabolism and insulin

sensitivity, which commonly decreases during aging, inactivity

and certain disease states.
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