Why Bad PRP Studies Matter: The Katz PRP JAMA Editorial

jama katz prp editorial

We’ve seen a rash of bad PRP studies with negative results lately. Given that we have dozens of positive studies showing that PRP works, the average physician might say, “Why is this a big deal?” After all, we physicians are used to scenarios where most of the research is positive with a handful of negative studies. However, a recent editorial that accompanied the most recent paper in JAMA shows why we all should be very concerned. Let’s dig in.

The Bad Papers

I’ve covered two of the recent papers published in JAMA that had serious issues. One was a negative trial result on the use of PRP in ankle arthritis and the other was a negative result in knee arthritis (1,2). The first paper used a poor PRP system made by Arthrex that isn’t capable of making a product that could be classified as PRP and the second used an even worse kit made by RegenLab that produced a PRP product with a normal whole blood platelet count. Hence, neither study actually tested PRP, despite their titles claiming that they were using PRP. A third paper published in JAMA suffered from the same issue in treating Achilles tendinopathy (3).

Learn More About Regenexx® Procedures
Request a digital booklet and more information to learn about alternatives to orthopedic surgery and the Regenexx patient experience.
We do not sell, or share your information to third party vendors. By submitting the form you agree that you've read and consent to our Privacy Policy.

The Editorial

PRP has been shown in dozens of randomized controlled trials to be effective (5-54). However, in the past few months, several papers that purport to show negative results have been published. What most people missed was that the third paper just published by JAMA this past week was accompanied by an editorial. This opinion piece stated (4):

“Platelet-rich plasma is an example of a promising laboratory discovery that was subsequently applied in human RCTs. However, the 3 RCTs published recently in JAMA suggest that translation of PRP from bench to beside has not yielded a successful new therapy for knee and ankle OA and Achilles tendinitis. Until a new generation of trials using standardized approaches to PRP therapy provides evidence of efficacy, it would be prudent to pause the use of PRP for OA and Achilles tendinitis.”

Huh? Four dozen positive PRP RCTs get trumped by three new RCTs all with the same serious flaw? Based on those flawed studies we have a university professor telling physicians they should stop using PRP? Who wrote this editorial and how can you scientifically support this statement? Why is this happening? Let’s start by answering the last question first.

Why Is This Happening? The Stakeholders

Business is often a game where there are winners and losers. To understand why this is happening to PRP, you need to learn about the business of drug development and its stakeholders. Let’s focus on developing a new FDA-approved drug for knee arthritis, a huge and growing market. There are several key players:

  • Bench scientists
  • Private companies/investment firms
  • Medical schools

I’ve already covered the role that bench scientists play in drug discovery. They begin with grant money paid by NIH (your tax dollars). About 40% of that goes to the university for admin fees and about 60% towards research. The university and bench scientists can then patent their lab discoveries.

As an example, let’s say a new gene therapy to help knee arthritis is discovered. A private company is formed by the university that licenses that patent and raises investment dollars. A hot CEO is hired who then partners with a university medical school to perform clinical trials. The company then pays the medical school to perform a study that will make up the FDA approval application.

As you can see, we now have a chain of stakeholders who have all bet the farm that this new therapy will be effective and be used widely by doctors to treat knee arthritis.

Why PRP Is a Problem for Our Knee OA Drug Stakeholders

From the moment grant money is paid by NIH to the moment a new drug application is filed for an FDA approval, many millions of dollars are spent. Hence, we now have stakeholders who are very sensitive to what’s already on the market to treat knee arthritis. If there’s one product that’s squarely in the craw of the new drug development pipeline for knee arthritis, it’s PRP.

PRP is cheap, already available on the market, widely used, and gaining acceptance. In addition, the FDA has stated many times that it’s leaving it alone. Meaning the FDA will not claim that PRP is a drug that requires approval. Finally, the fact that PRP has dozens of RCTs showing it works is a HUGE problem.

PRP is also knocking on the door for reimbursement by major insurers. This is a nightmare for any company developing new knee arthritis drugs. Why? You spent hundreds of millions developing your new knee arthritis therapy, hence, you need to get that money back for investors. Because of that investment, your new drug is likely to be at least 10X more expensive than PRP. In a health insurance world that loves cheap over expensive, while your drug may get FDA approval, it may have no market in which to live. After all, why would United Healthcare pay ten times more for a drug that works no better than PRP?

So if you’re a part of this drug development team, you need to get rid of PRP. How do you do that? I’ve already blogged on how the university lab scientists are seeding negative stories about PRP. However, given the wide popularity of PRP, that alone won’t get this done. You also need to chop PRP down, one bad study at a time, which is what we’re seeing.

The Author

Now let’s take the concepts above and see if they hold water in the real world. The name of the author of the recent JAMA editorial is Jeffery Katz, MD, MSc. I had no idea who that was so I looked him up. This is from his required conflict of interest disclosure for this editorial:

“Dr Katz reported receiving support from Biosplice as principal investigator of an observational study of osteoarthritis outcomes.”

What the heck is Biosplice? This is from their website:

biospice knee arthritis

Biosplice is a company developing a gene therapy to treat knee arthritis. So the guy who wrote this editorial about the three bad PRP studies is a university scientist who is taking grant money from a company developing a drug to treat knee arthritis. As I always say, you just can’t make this stuff up. This editorial is a direct example of the drug development stakeholder problem PRP now faces.

How These Three Negative RCTs Will Be Used

Realize that for insurance companies and policymakers, the most convincing research is a systematic review or meta-analysis. That’s where researchers take data from many studies and try to see what the whole body of literature tells us. The good news is that in these studies, the number of positive studies usually matters. However, you can also play with the criteria for which papers you accept or reject for your analysis. You can also weight certain papers more or less, depending on all sorts of subjective concepts. Hence, I would expect that researchers involved with the drug development teams are licking their chops over these new JAMA articles. They can be used, along with some creative inclusion and exclusion criteria to create new systematic reviews and meta-analyses that will show that PRP isn’t effective. That’s despite dozens of randomized studies showing that PRP works.

The upshot? IMHO the members of the university-business-pharma complex are hard at work trying to get rid of PRP. This isn’t a coordinated conspiracy, just individual stakeholders trying to protect their own interests. As a patient or physician that receives or uses PRP, will you let them get rid of this inexpensive and elegant solution to treat arthritis or will you expose the games being played? You know where I stand.

__________________________________________________

References:

(1) Bennell KL, Paterson KL, Metcalf BR, et al. Effect of Intra-articular Platelet-Rich Plasma vs Placebo Injection on Pain and Medial Tibial Cartilage Volume in Patients With Knee Osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA. 2021;326(20):2021–2030. doi:10.1001/jama.2021.19415

(2) Paget LDA, Reurink G, de Vos RJ, Weir A, Moen MH, Bierma-Zeinstra SMA, Stufkens SAS, Kerkhoffs GMMJ, Tol JL; PRIMA Study Group. Effect of Platelet-Rich Plasma Injections vs Placebo on Ankle Symptoms and Function in Patients With Ankle Osteoarthritis: A Randomized Clinical Trial. JAMA. 2021 Oct 26;326(16):1595-1605. doi: 10.1001/jama.2021.16602. PMID: 34698782.

(3) Kearney RS, Ji C, Warwick J, Parsons N, Brown J, Harrison P, Young J, Costa ML; ATM Trial Collaborators. Effect of Platelet-Rich Plasma Injection vs Sham Injection on Tendon Dysfunction in Patients With Chronic Midportion Achilles Tendinopathy: A Randomized Clinical Trial. JAMA. 2021 Jul 13;326(2):137-144. doi: 10.1001/jama.2021.6986. PMID: 34255009; PMCID: PMC8278266.

(4) Katz JN. Platelet-Rich Plasma for Osteoarthritis and Achilles Tendinitis. JAMA. 2021 Nov 23;326(20):2012-2014. doi: 10.1001/jama.2021.19540. PMID: 34812886.

(5) Senna MK, Shaat RM, Ali AAA. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome. Clin Rheumatol. 2019 Dec;38(12):3643-3654. doi: 10.1007/s10067-019-04719-7. Epub 2019 Aug 16. PMID: 31420812.

(6) Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.

(7) Malahias MA, Nikolaou VS, Johnson EO, Kaseta MK, Kazas ST, Babis GC. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: A placebo-controlled clinical study. J Tissue Eng Regen Med. 2018 Mar;12(3):e1480-e1488. doi: 10.1002/term.2566. Epub 2017 Dec 17. PMID: 28873284.

(8) Malahias MA, Nikolaou VS, Johnson EO, Kaseta MK, Kazas ST, Babis GC. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: A placebo-controlled clinical study. J Tissue Eng Regen Med. 2018 Mar;12(3):e1480-e1488. doi: 10.1002/term.2566. Epub 2017 Dec 17. PMID: 28873284.

(9) Uslu Güvendi E, Aşkin A, Güvendi G, Koçyiğit H. Comparison of Efficiency Between Corticosteroid and Platelet Rich Plasma Injection Therapies in Patients With Knee Osteoarthritis. Arch Rheumatol. 2017;33(3):273–281. Published 2017 Nov 2. doi: 10.5606/ArchRheumatol.2018.6608

(10) Tavassoli M, Janmohammadi N, Hosseini A, Khafri S, Esmaeilnejad-Ganji SM. Single- and double-dose of platelet-rich plasma versus hyaluronic acid for treatment of knee osteoarthritis: A randomized controlled trial. World J Orthop. 2019;10(9):310–326. Published 2019 Sep 18. doi: 10.5312/wjo.v10.i9.310

(11) Joshi Jubert N, Rodríguez L, Reverté-Vinaixa MM, Navarro A. Platelet-Rich Plasma Injections for Advanced Knee Osteoarthritis: A Prospective, Randomized, Double-Blinded Clinical Trial. Orthop J Sports Med. 2017;5(2):2325967116689386. Published 2017 Feb 13. doi: 10.1177/2325967116689386

(12) Raeissadat SA, Rayegani SM, Hassanabadi H, et al. Knee Osteoarthritis Injection Choices: Platelet- Rich Plasma (PRP) Versus Hyaluronic Acid (A one-year randomized clinical trial). Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:1–8. Published 2015 Jan 7. doi: 10.4137/CMAMD.S17894

(13) Montañez-Heredia E, Irízar S, Huertas PJ, et al. Intra-Articular Injections of Platelet-Rich Plasma versus Hyaluronic Acid in the Treatment of Osteoarthritic Knee Pain: A Randomized Clinical Trial in the Context of the Spanish National Health Care System. Int J Mol Sci. 2016;17(7):1064. Published 2016 Jul 2. doi: 10.3390/ijms17071064

(14) Görmeli G, Görmeli CA, Ataoglu B, Çolak C, Aslantürk O, Ertem K. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017 Mar;25(3):958-965. doi: 10.1007/s00167-015-3705-6.

(15) Lana JF, Weglein A, Sampson SE, et al. Randomized controlled trial comparing hyaluronic acid, platelet-rich plasma and the combination of both in the treatment of mild and moderate osteoarthritis of the knee. J Stem Cells Regen Med. 2016;12(2):69–78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227106/

(16) Tavassoli M, Janmohammadi N, Hosseini A, Khafri S, Esmaeilnejad-Ganji SM. Single- and double-dose of platelet-rich plasma versus hyaluronic acid for treatment of knee osteoarthritis: A randomized controlled trial. World J Orthop. 2019;10(9):310–326. Published 2019 Sep 18. doi: 10.5312/wjo.v10.i9.310

(17) Lin KY, Yang CC, Hsu CJ, Yeh ML, Renn JH. Intra-articular Injection of Platelet-Rich Plasma Is Superior to Hyaluronic Acid or Saline Solution in the Treatment of Mild to Moderate Knee Osteoarthritis: A Randomized, Double-Blind, Triple-Parallel, Placebo-Controlled Clinical Trial. Arthroscopy. 2019 Jan;35(1):106-117. doi: 10.1016/j.arthro.2018.06.035.

(18) Huang Y, Liu X, Xu X, Liu J. Intra-articular injections of platelet-rich plasma, hyaluronic acid or corticosteroids for knee osteoarthritis : A prospective randomized controlled study. Orthopade. 2019 Mar;48(3):239-247. doi: 10.1007/s00132-018-03659-5.

(19) Di Martino A, Di Matteo B, Papio T, Tentoni F, Selleri F, Cenacchi A, Kon E, Filardo G. Platelet-Rich Plasma Versus Hyaluronic Acid Injections for the Treatment of Knee Osteoarthritis: Results at 5 Years of a Double-Blind, Randomized Controlled Trial. Am J Sports Med. 2019 Feb;47(2):347-354. doi: 10.1177/0363546518814532.

(20) Yu W, Xu P, Huang G, Liu L. Clinical therapy of hyaluronic acid combined with platelet-rich plasma for the treatment of knee osteoarthritis. Exp Ther Med. 2018;16(3):2119–2125. doi: 10.3892/etm.2018.6412

(21) Buendía-López D, Medina-Quirós M, Fernández-Villacañas Marín MÁ. Clinical and radiographic comparison of a single LP-PRP injection, a single hyaluronic acid injection and daily NSAID administration with a 52-week follow-up: a randomized controlled trial. J Orthop Traumatol. 2018;19(1):3. Published 2018 Aug 20. doi: 10.1186/s10195-018-0501-3

(22) Su K, Bai Y, Wang J, Zhang H, Liu H, Ma S. Comparison of hyaluronic acid and PRP intra-articular injection with combined intra-articular and intraosseous PRP injections to treat patients with knee osteoarthritis. Clin Rheumatol. 2018 May;37(5):1341-1350. doi: 10.1007/s10067-018-3985-6.

(23) Louis ML, Magalon J, Jouve E, Bornet CE, Mattei JC, Chagnaud C, Rochwerger A, Veran J3, Sabatier F. Growth Factors Levels Determine Efficacy of Platelets Rich Plasma Injection in Knee Osteoarthritis: A Randomized Double Blind Noninferiority Trial Compared With Viscosupplementation. Arthroscopy. 2018 May;34(5):1530-1540.e2. doi: 10.1016/j.arthro.2017.11.035.

(24) Lisi C, Perotti C, Scudeller L, Sammarchi L, Dametti F, Musella V, Di Natali G. Treatment of knee osteoarthritis: platelet-derived growth factors vs. hyaluronic acid. A randomized controlled trial. Clin Rehabil. 2018 Mar;32(3):330-339. doi: 10.1177/0269215517724193

(25) Cole BJ, Karas V, Hussey K, Pilz K, Fortier LA. Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis. Am J Sports Med. 2017 Feb;45(2):339-346. doi: 10.1177/0363546516665809.

(26) Kaminski R, Maksymowicz-Wleklik M, Kulinski K, Kozar-Kaminska K, Dabrowska-Thing A, Pomianowski S. Short-Term Outcomes of Percutaneous Trephination with a Platelet Rich Plasma Intrameniscal Injection for the Repair of Degenerative Meniscal Lesions. A Prospective, Randomized, Double-Blind, Parallel-Group, Placebo-Controlled Study. Int J Mol Sci. 2019 Feb 16;20(4):856. doi: 10.3390/ijms20040856. PMID: 30781461; PMCID: PMC6412887.

(27) Malahias MA, Roumeliotis L, Nikolaou VS, Chronopoulos E, Sourlas I, Babis GC. Platelet-Rich Plasma versus Corticosteroid Intra-Articular Injections for the Treatment of Trapeziometacarpal Arthritis: A Prospective Randomized Controlled Clinical Trial. Cartilage. 2021 Jan;12(1):51-61. doi: 10.1177/1947603518805230. Epub 2018 Oct 20. PMID: 30343590; PMCID: PMC7755966.

(28) Dallari D, Stagni C, Rani N, Sabbioni G, Pelotti P, Torricelli P, Tschon M, Giavaresi G. Ultrasound-Guided Injection of Platelet-Rich Plasma and Hyaluronic Acid, Separately and in Combination, for Hip Osteoarthritis: A Randomized Controlled Study. Am J Sports Med. 2016 Mar;44(3):664-71. doi: 10.1177/0363546515620383. Epub 2016 Jan 21. PMID: 26797697.

(29) Battaglia M, Guaraldi F, Vannini F, Rossi G, Timoncini A, Buda R, Giannini S. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013 Dec;36(12):e1501-8. doi: 10.3928/01477447-20131120-13. PMID: 24579221.

(30) Pasin T, Ataoğlu S, Pasin Ö, Ankarali H. Comparison of the Effectiveness of Platelet-Rich Plasma, Corticosteroid, and Physical Therapy in Subacromial Impingement Syndrome. Arch Rheumatol. 2019 Mar 28;34(3):308-316. doi: 10.5606/ArchRheumatol.2019.7225. PMID: 31598597; PMCID: PMC6768781.

(31) Shams A, El-Sayed M, Gamal O, Ewes W. Subacromial injection of autologous platelet-rich plasma versus corticosteroid for the treatment of symptomatic partial rotator cuff tears. Eur J Orthop Surg Traumatol. 2016 Dec;26(8):837-842. doi: 10.1007/s00590-016-1826-3. Epub 2016 Aug 20. PMID: 27544678.

(32) Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.

(33) Cai YU, Sun Z, Liao B, Song Z, Xiao T, Zhu P. Sodium Hyaluronate and Platelet-Rich Plasma for Partial-Thickness Rotator Cuff Tears. Med Sci Sports Exerc. 2019;51(2):227-233. doi:10.1249/MSS.0000000000001781

(34) Lin J. Platelet-rich plasma injection in the treatment of frozen shoulder: A randomized controlled trial with 6-month follow-up
. Int J Clin Pharmacol Ther. 2018 Aug;56(8):366-371. doi: 10.5414/CP203262. PMID: 29932415.

(35) Nejati P, Ghahremaninia A, Naderi F, Gharibzadeh S, Mazaherinezhad A. Treatment of Subacromial Impingement Syndrome: Platelet-Rich Plasma or Exercise Therapy? A Randomized Controlled Trial. Orthop J Sports Med. 2017 May 19;5(5):2325967117702366. doi: 10.1177/2325967117702366. PMID: 28567426; PMCID: PMC5439655.

(36) Pasin T, Ataoğlu S, Pasin Ö, Ankarali H. Comparison of the Effectiveness of Platelet-Rich Plasma, Corticosteroid, and Physical Therapy in Subacromial Impingement Syndrome. Arch Rheumatol. 2019 Mar 28;34(3):308-316. doi: 10.5606/ArchRheumatol.2019.7225. PMID: 31598597; PMCID: PMC6768781.

(37) Rha DW, Park GY, Kim YK, Kim MT, Lee SC. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clin Rehabil. 2013 Feb;27(2):113-22. doi: 10.1177/0269215512448388. Epub 2012 Oct 3. PMID: 23035005.

(38) Senna MK, Shaat RM, Ali AAA. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome. Clin Rheumatol. 2019 Dec;38(12):3643-3654. doi: 10.1007/s10067-019-04719-7. Epub 2019 Aug 16. PMID: 31420812.

(39) Pasin T, Ataoğlu S, Pasin Ö, Ankarali H. Comparison of the Effectiveness of Platelet-Rich Plasma, Corticosteroid, and Physical Therapy in Subacromial Impingement Syndrome. Arch Rheumatol. 2019 Mar 28;34(3):308-316. doi: 10.5606/ArchRheumatol.2019.7225. PMID: 31598597; PMCID: PMC6768781.

(40) Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, Ramsey ML, Karli DC, Rettig AC. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014 Feb;42(2):463-71. doi: 10.1177/0363546513494359. Epub 2013 Jul 3. PMID: 23825183.

(41) Pasin T, Ataoğlu S, Pasin Ö, Ankarali H. Comparison of the Effectiveness of Platelet-Rich Plasma, Corticosteroid, and Physical Therapy in Subacromial Impingement Syndrome. Arch Rheumatol. 2019 Mar 28;34(3):308-316. doi: 10.5606/ArchRheumatol.2019.7225. PMID: 31598597; PMCID: PMC6768781.

(42) Martínez-Montiel O, Valencia-Martinez G, Blanco-Bucio P, Villalobos-Campuzano C. Tratamiento de epicondilitis de codo con plasma rico en plaquetas versus corticosteroide local [Treatment of elbow epicondylitis with platelet rich plasma versus local corticosteroids]. Acta Ortop Mex. 2015 May-Jun;29(3):155-8. Spanish. PMID: 26999966.

(43) Palacio EP, Schiavetti RR, Kanematsu M, Ikeda TM, Mizobuchi RR, Galbiatti JA. Effects of platelet-rich plasma on lateral epicondylitis of the elbow: prospective randomized controlled trial. Rev Bras Ortop. 2016 Jan 13;51(1):90-5. doi: 10.1016/j.rboe.2015.03.014. PMID: 26962506; PMCID: PMC4767828.

(44) Pasin T, Ataoğlu S, Pasin Ö, Ankarali H. Comparison of the Effectiveness of Platelet-Rich Plasma, Corticosteroid, and Physical Therapy in Subacromial Impingement Syndrome. Arch Rheumatol. 2019 Mar 28;34(3):308-316. doi: 10.5606/ArchRheumatol.2019.7225. PMID: 31598597; PMCID: PMC6768781.

(45) Gautam VK, Verma S, Batra S, Bhatnagar N, Arora S. Platelet-rich plasma versus corticosteroid injection for recalcitrant lateral epicondylitis: clinical and ultrasonographic evaluation. J Orthop Surg (Hong Kong). 2015 Apr;23(1):1-5. doi: 10.1177/230949901502300101. PMID: 25920633.

(46) Gosens T, Peerbooms JC, van Laar W, den Oudsten BL. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011 Jun;39(6):1200-8. doi: 10.1177/0363546510397173. Epub 2011 Mar 21. PMID: 21422467.

(47) Merolla G, Dellabiancia F, Ricci A, Mussoni MP, Nucci S, Zanoli G, Paladini P, Porcellini G. Arthroscopic Debridement Versus Platelet-Rich Plasma Injection: A Prospective, Randomized, Comparative Study of Chronic Lateral Epicondylitis With a Nearly 2-Year Follow-Up. Arthroscopy. 2017 Jul;33(7):1320-1329. doi: 10.1016/j.arthro.2017.02.009. Epub 2017 Apr 19. PMID: 28433443.

(48) Raeissadat SA, Rayegani SM, Hassanabadi H, Rahimi R, Sedighipour L, Rostami K. Is Platelet-rich plasma superior to whole blood in the management of chronic tennis elbow: one year randomized clinical trial. BMC Sports Sci Med Rehabil. 2014 Mar 18;6:12. doi: 10.1186/2052-1847-6-12. PMID: 24635909; PMCID: PMC4006635.

(49) Thanasas C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011 Oct;39(10):2130-4. doi: 10.1177/0363546511417113. Epub 2011 Aug 2. PMID: 21813443.

(50) Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.

(51) Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.

(52) Kesikburun S, Tan AK, Yilmaz B, Yaşar E, Yazicioğlu K. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013 Nov;41(11):2609-16. doi: 10.1177/0363546513496542. Epub 2013 Jul 26. PMID: 23893418.

(53) Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of High-Volume Injection, Platelet-Rich Plasma, and Sham Treatment in Chronic Midportion Achilles Tendinopathy: A Randomized Double-Blinded Prospective Study. Am J Sports Med. 2017 Jul;45(9):2034-2043. doi: 10.1177/0363546517702862. Epub 2017 May 22. PMID: 28530451.

(54) Alsousou J, Thompson M, Harrison P, Willett K, Franklin S. Effect of platelet-rich plasma on healing tissues in acute ruptured Achilles tendon: a human immunohistochemistry study. Lancet. 2015 Feb 26;385 Suppl 1:S19. doi: 10.1016/S0140-6736(15)60334-8. PMID: 26312841.

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications. View Profile

If you have questions or comments about this blog post, please email us at [email protected]

NOTE: This blog post provides general information to help the reader better understand regenerative medicine, musculoskeletal health, and related subjects. All content provided in this blog, website, or any linked materials, including text, graphics, images, patient profiles, outcomes, and information, are not intended and should not be considered or used as a substitute for medical advice, diagnosis, or treatment. Please always consult with a professional and certified healthcare provider to discuss if a treatment is right for you.

TO TOP