High Tibial Osteotomy of the Knee Helps Cartilage in MRI Study

by Chris Centeno, MD /
High Tibial Osteotomy

High Tibial Osteotomy

In Latin, valgus means “knock-kneed” and varus, “bow-legged”. High Tibial Osteotomy (HTO) is a surgery performed in patients who have these knee problems. The basic concept is that cartilage is wearing down faster on one side of the knee due to the varus or valgus angle of the knee and the surgery works by removing a wedge of bone from the tibia to straighten out the angle. I’ve always been a little wary of the surgery because it’s a very big and invasive procedure, but the procedure made some biomechanical sense. Now a new study shows that in a small group of 10 patients, the surgery changed the rate of cartilage breakdown on the compressed side for the better. In essence, the MRI numbers for good chamicals in cartilage went from less before the surgery to more after the surgery. The study was very small and didn’t include a group that wasn’t operated. However, to the study’s credit, rather than following patients for only a few months (where the immobilization alone from the surgery would be expected to help the cartilage breakdown) they followed patients for two years and showed that the numbers were still improving after the prolonged immobilization from the surgery. The upshot? While far from conclusive, this study is encouraging for patients who are bow legged or knock-knock kneed who are considering tibial osteotomy knee surgery. Study abstract is below:

Am J Sports Med. 2011 Feb 1. [Epub ahead of print]

Articular Cartilage Changes in Patients With Oseteoarthritis After Osteotomy.

Parker DA, Beatty KT, Giuffre B, Scholes CJ, Coolican MR.

Sydney Orthopaedic Research Institute, Chatswood, New South Wales, Australia.

Abstract

BACKGROUND: High tibial osteotomy (HTO) is a method used to treat medial compartmental osteoarthritis in the knee. The realignment of the knee changes the loading patterns within the joint and may allow for regeneration of articular cartilage. Magnetic resonance imaging methods can be used to assess the quality of the regenerated cartilage.

HYPOTHESIS: Altering mechanical alignment through HTO will have predictable effects on articular cartilage, allowing cartilage preservation and possible regeneration. Quality of regenerated cartilage will be inferior to normal articular cartilage.

STUDY DESIGN: Case series; Level of evidence, 4.

METHODS: Ten patients undergoing medial opening wedge HTO were evaluated using dGEMRIC methods (ie, delayed gadolinium-enhanced magnetic resonance imaging of cartilage) preoperatively and at 6 months, 1 year, and 2 years after HTO. Magnetic resonance images were evaluated by hand segmentation, and T1(Gd) relaxation times reflective of glycosaminoglycan content were determined for these regions of interest using magnetic resonance imaging analysis software.

RESULTS: The lateral compartment displayed higher T1(Gd) values than the medial compartment at baseline. Initially, a decrease in T1(Gd) values on the medial side were observed for all patients at 6 months and remained reduced for all but 2 participants at 1 year and 2 years after HTO. However, on the medial side after 6 months, the rate of change for T1(Gd) values shifted from being negative (-9.6 milliseconds per month) to being positive (1.7 milliseconds per month). A positive change in the T1(Gd) of the medial tibial plateau was responsible for the positive overall change in the medial compartment. There was no significant difference in the rate of change on the lateral side (P = .141), with the average over the 2-year period being a decrease of 2.28 milliseconds per month.

CONCLUSION: Medial opening wedge HTO provides subjective improvements in pain and quality of life, but the potential benefit of allowing articular cartilage preservation and possible regeneration is not well established. Results showed that after a nonweightbearing period, the rate of change in the medial compartment changes from negative to positive, indicating the potential for articular cartilage recovery secondary to an improved mechanical environment.

PMID: 21285442 [PubMed – as supplied by publisher]

Category: Knee, Latest News

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.