What is Platelet Lysate?

by Chris Centeno, MD /

You may have heard of platelet rich plasma or PRP, which is concentrating blood platelets and injecting them to prompt healing. Platelet lysate (PL) is it’s more advanced cousin. We first began using PL in orthopedic injuries in 2005. It’s just now starting to catch on via other clinics trying to replicate what we do, so what is platelet lysate and why is it important?

Platelets live in your blood. They are little fragments of cells that are stocked with growth factors and initiate clotting. When you get a cut, it bleeds and the platelets are nanomachines that help to stop the bleeding via a blood clot. The clot is more than just glue to stop the flow of blood out of damaged vessels, it’s also nature’s advanced biologic scaffold to initiate and support healing. Within that healing matrix are billions of platelets that excrete growth factors. These specialized chemicals “speak” to other cells, telling them what to do and energizing the construction effort. I like to tell patients that these growth factors inside platelets act like espresso shots for the cells that are repairing damaged tissue.

PRP is simply concentrating the platelets in the blood. The 1st generation PRPs were messy and bloody affairs that were red and newer PRPs are amber, having eliminated the pro-inflammatory red and white blood cells. Our 2nd generation PRP can be concentrated to ultra-high levels, so we call it SCP (Super Concentrated Platelets). PRP works by concentrated platelets slowly releasing growth factors over approximately a week. Sort of like a timed release version of a pill. What if you want an immediate release version with many more growth factors available all at once? You use a platelet lysate (PL). In our experience while PRP can cause inflammation, PL is very anti-inflammatory and hence can be used more easily around nerves. To get a visual understanding of a platelet lysate, click on the video above.

We began using PL in 2005 as an adjunct to our stem cell treatments. When we began culturing mesenchymal stem cells (MSCs) we didn’t want to use recombinant growth factors or fetal calf blood to get MSCs to grow because of the patient risks, hence we used the growth factors from the patient’s own platelets. Through the years we found some great clinical uses for PL such as to replace toxic, high dose steroids in epidural injections and nerve hydro-dissection. This past 1-2 years, after being the only clinic using PL in the U.S. we’ve begin to see some other clinics begin to use it in patients. We welcome the company, but as usual these clinics are using an outdated method to make PL that’s simple for the clinic, but not the best method for the patient. Let me explain.

The simplest way to make PL is to take red blood cell free PRP (amber PRP) and throw it overnight in the freezer. When you thaw the sample, the ice crystals will have broken up some of the platelets and release the growth factors into the serum. There are some other tricks that most clinics using PL don’t understand, but at least this is a rough and dirty way to get to a PL. Through the years we wondered if this actually broke open all of the platelets, or just some of them? In addition, could we develop a PL that had much higher growth factor content?

The graph below shows what happens when you put our amber PRP in the freezer to create PL (1st generation). You still have a huge number of platelets that don’t give up their payloads (here noted as 1st Gen). Note that by the time we had created our 3rd generation PL procedure, this issue had been solved (3rd gen). Why? In that procedure, there are few remaining platelets, hence we’ve been able to lyse (break open) almost all the platelets in the sample.

platelet lysateSo what if you can lyse more platelets? Does that result in more growth factors and that in turn do better things to real human stem cells?

platelet lysate 2

What are you looking at above? The three graphs marked PDGF-AB, VEGF, and TGF-B are all ELISA tests that we ran on our 1st generation versus our third generation platelet lysate. The height of the blue bars equals the growth factor levels in our 1st gen procedure and the height of the red bars are the amounts in our 3rd gen procedure. Across multiple patients we were able to significantly increase the growth factor levels by using a more sophisticated PL procedure (3rd gen). The graph in the lower right corner is what the first gen and third gen procedures do to stem cells. meaning, the higher the bars in this graph, the more stem cell growth we saw in culture. In 4/5 patients tested, there was dramatically better stem cell growth when the 3rd gen procedure is used.

The upshot? As I’ve said before, this is how we roll. While the rest of the world is struggling to figure out how to make a first generation platelet lysate, we’ve been using our third generation procedure for two years and are now working on the fourth generation procedure. Why spend all of this money on continually improving what we do at Regenexx? So that you know that when you get a Regenexx procedure, you’re getting the latest and greatest technology available, not yesterday’s news…

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.