Can the Human Brain’s Innate GPS System Be Replicated in AI?

By Chris Centeno, MD /

Receive a Regenexx® Patient Info Packet by email and learn why it's a superior regenerative solution.

If you read this blog, you’ll see that I have often said that AI would change medicine and everything else. One way that will begin is by studying the brain and how it works and then replicating that in machines. This morning’s blog is about an AI system that replicates how we navigate in natural environments, which may seem like a simple thing, but it’s not something any computer does well yet.

What Is AI?

I first noticed artificial neural networks back in the ’90s, at the dawn of the Internet. I’m not sure why, but the field just fascinated me. I guess it was the idea that a computer could be trained and not programmed. The problem was that back then, this was really esoteric stuff. It all remained that way until about five years ago when the big boys (Google, Microsoft, Facebook, and others) began to understand that artificial intelligence (AI) could give them a competitive edge. Hence, neural networks suddenly went from obscurity to prime time in a matter of months.

What is a neural network? This is a computer program (or increasingly a hardware chip) that mimics how the human brain thinks. It has artificial neural connections that are either stimulated or down regulated as information comes in. It begins as a blank slate until you feed it data and tell it a goal, and then the connections between the data that meet the established goal feed the neural connections in the software and it takes form. Basically, it learns like a human does.

This tech is used everywhere right now. For example, all of our phones use it to get better at translating speech into text. In medicine, it’s used to find which rare genetic mutations in tumors respond the best to any specific chemotherapy drug. Even UPS uses this software to plan its driver’s routes to save on gas.

What Are Grid Cells? 

Grid cells form a complex neural network in the entorhinal cortex in the brain that allow us to self-navigate, a kind of biological GPS system. More simply, they allow us to mentally map positional coordinates simply by wandering around a new location, fascinatingly, even in complete darkness or with no visual or external markers to go by (termed dead-reckoning navigation). A similar group of cells in the hippocampus of the brain called place cells are responsible for remembering specific locations, so it’s believed the two work together somehow to keep us directionally grounded in space and time.

In addition, these cells are constantly mapping our environment, recording it to memory, and providing the easiest ways for us to get from point A to point B.  Place cells were discovered in the 1970s, but it would take a few decades before grid cells were found, and the discovery earned its scientists the Nobel Prize in 2014.

We all know people who have no sense of direction whatsoever and others who can instantly tell you which way is north, south, east, or west from any location, so clearly some of us have more active grid cells than others. And with Google Maps and other GPS devices always at our fingertips in today’s technology-driven world, one has to wonder if our grid cells as a human population aren’t much less active then our ancestors’ were. Now, scientists have even discovered a way to create a grid cell-like navigational functionality in the world of artificial intelligence (AI). Let take a look at the new study.

Replicating the Human Brain’s Navigation Network in AI

Using the grid cells in the brain as a model, researchers set out to replicate a grid-like navigational network in AI. AI learns through reinforcement, which means that it’s taught like a child. Researchers, in the new study, first trained the AI neural network on performing path integrations as grid cells would. Grid cells use a hexagonal pattern and select the most efficient path from one place to the next.

With deep reinforcement learning, the AI network was able to determine the shortest paths from one point to another. In other words, it was able to map out shortcuts similar to the grid cell networks in the human brain. So training AI in the similar grid-cell pattern used by the human brain was able to replicate one of the brain’s higher functions, specifically shortcut navigation.

It’s not hard to see that this new technology will soon find its way into our phones. Google and Amazon would love to have an accurate map of your home or office, noting where all of your stuff lives. How you navigate around this environment will tell them how to best sell you more stuff, using AI programs that find the little details that we humans may miss.

More Fascinating AI Advances

If you’re a regular follower of the blog, you know I that I’m a fan of AI. Here’s a few studies I’ve covered over the past couple of years.

If you have some time, feel free to watch my video below of my lecture on the knee microenvironment and our own AI neural network (the next frontier of regenerative medicine outcomes) at the Interventional Orthopedics Foundation last year.

The upshot? One of the most fascinating areas of research right now is studying how the brain works and replicating that in AI. This will take lots of forms, but one day in the not too distant future, we will see artificial intelligence computer systems that make ours look quaint. While many fear that day, for modern humans, it will be the equivalent of the dawn of the printing press, a transformative moment when everything after is different from everything before.

Category: Latest News

Leave a Reply

Your email address will not be published. Required fields are marked *

2 thoughts on “Can the Human Brain’s Innate GPS System Be Replicated in AI?

  1. Gordon Tough

    I am waiting for a knee replacement before October due to arthritis,my knee surgeon says it is quite advanced. I have been wearing an offloading brace for5 months.
    I also have spinal troubles. Had spondilolysthesis op in 1992 which lasted till 2008 before symptoms returned and on 2 sticks by May 2010. Metalwork took out last year that was put in originally in 1992 and awaiting knee to be sorted b4 looking at the back again. All x rays,ct scan,mri scan already taken. Need to know the cost for each surgery and nearest clinic to Birmingham uk. Why you not answer then?

    1. Regenexx Team

      Gordon,
      We do have a Regenexx Provider in Birmingham, UK, but we don’t do surgery. We help patients avoid surgery with precise image guided injection procedures which use their own platelets and stem cells. Please see: https://www.algocells.com/?utm_source=regenexxreferral&utm_medium=webreferral&utm_campaign=regenexxlocations

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.