What We Can Learn from a Dead Walking Cat with No Brain

by Chris Centeno, MD /

It’s Halloween time, which is a big deal in my house. My wife loves to decorate heavily, and we all get into it as we live in a neighborhood that gets hundreds of kids an hour. At a recent conference, I saw this great video of an old dead-cat experiment, and I thought it was perfect as a lead-up to All Hallows’ Eve! In addition, this walking dead cat can teach you something about your amazing body and what may be wrong with it that causes pain.

The Walking Dead Cat

This is an old experiment, but one that still amazes me. Yes, this is an experiment that likely could never be done in 2017, but it looks like it’s from the ’20-’30s. Once you get beyond the “ick factor,” it will also amaze you. As an example, I showed it to my wife last night and her initial reaction was that this was awful. However, she came back an hour later, once she had thought about it, and was intrigued about how it all worked.

What’s amazing is that they removed most of the brain of this dead cat (they left the brain stem) and propped him up on a treadmill. Note that while he has no forebrain, he can still walk, trot, and run! Think about that for a second. All of the complex muscle coordination that would allow him to do this, is retained. This is a virtual perfect symphony of millisecond-precision firing of many muscles that still work when the cat is clinically deceased. Why?

Nerves move information relatively slowly compared to electrical systems, where electrons zip around at the speed of light. Hence, if the nerve impulses had to travel back and forth to the brain to allow us to walk, we could never coordinate all of the complex muscle firings quickly enough. Your body solves the issue by locating most of the complex neural circuitry that controls walking in the spinal cord, which shortens the distance that the nerve signals must travel. That can then be modified by more circuitry in the brain stem, which can then be further modified by your brain. In the case of a cat, this circuitry still works even if you remove the brain.

While this seems like distant and obtuse knowledge, it’s really not. In fact, it’s being used right now, in part, to help paralyzed people walk again with epidural stimulators. In fact, there was just a press release this morning on this new technology.

What Can We Learn from the Cat?

While there is neural circuitry that allows the cat to walk, another element that helps the cat is tensegrity. What’s that? Check out the tensegrity structure below as it hits the ground and bounces back to its normal shape:

A tensegrity structure is made up of stiff poles and cables that hold the shape through tension. In the cat (or your legs and spine), the bones are the poles and the tendons, ligaments, muscles, and fascia are the cables. It’s not hard to see that the structure above is storing energy as it hits the ground and rebounding off the floor as it returns that energy.

This video shows a tensegrity structure built to represent the leg:

What Happens in a Tensegrity Structure if You Mess with the Cables?

Image result for tensegrity sculpture

In a tensegrity structure, if you cut or damage one of the cables, the whole shape of the structure is impacted. Look at the tensegrity sculpture to the right. If you cut one of the taught cables at the bottom that are holding this together, it’s not hard to see how the whole structure will deform.

Now think about your body, which is one big tensegrity structure. In a similar way, if you stretch a ligament or tendon in your foot or knee, it’s not hard to see how it will impact the shape of your body in small ways. Hence, the lesson of the cat is not only that much of the neurology is automatic but also that the built-in tensegrity provides the key “spring” in the system.

Fixing Tensegrity

One of the areas where the precise imaging-guided injection of stem cells or PRP excels is tightening and healing stretched-out ligaments, tendons, and fascia. Hence, while identifying where to treat can be complex and takes a highly detailed exam, fixing it can be as simple as a precise placement of something that can heal the damage.

The upshot? We can all learn a lot from a spooky dead cat at Halloween! The big lesson for patients is that because your body is a tensegrity structure, what happens to ligaments or tendons in one area can impact other areas! In addition, regen med techniques can help solve these issues!


This lecture was inspired by Brad Fullerton‘s excellent work on tensegrity and fascia!

Category: Latest News

Leave a Reply

Your email address will not be published. Required fields are marked *

1 thought on “What We Can Learn from a Dead Walking Cat with No Brain

  1. Bridgette

    Did you make that leg model??!! Very cool!!

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.