Mutated Stem Cells in Our Bone Marrow Associated with Disease and Mortality

by Chris Centeno, MD /

When we think of mutated cells, some of us think of monsters. Some of us may think about cancer. But did you know that we all have mutated cells cruising around our bodies every day? Let me explain.

Defining Mutated Cells

A mutated cell occurs when the genetic sequence that makes up that cell becomes permanently altered in some way. These mutations can be hereditary (genetic) or they can be somatic (acquired). Inherited mutations are present before birth and throughout life, and these mutations can be passed on to the next generation.

Somatic mutations, on the other hand, are acquired at some point during the person’s life, perhaps due to constant overexposure to the sun, chemicals, or smoking for example. Some of these cells are so dysfunctional that they can’t function normally nor can they divide and replicate. A few do grow and divide, so the genetic mutation is passed on to the cloned cells that are created within that person. While mutations can cause diseases, such as cancer, your body is constantly identifying these cells and taking them out by attacking them.

Our feature study today focuses on these somatic mutations in the hematologic system and the conditions in which these mutations are associated.

The Hematologic System and Hematopoiesis

The hematologic system consists of blood and blood-producing tissues (e.g., bone marrow) as well as immune cells, so hematologic conditions would include leukemias, myelomas, and lymphomas for example. Another term you need to be familiar with is hematopoiesis, which is the process of blood cell (red, white, and platelets) production by hematopoietic stem cells in the bone marrow.

Your Risk of Mutated Cells May Increase as You Age

While cell mutations are understood to exist in those with hematologic disorders (cancer, for example, would be a result of the activation of these mutations), the new study set out to determine if these somatic (acquired) cell mutations were common in those without hematologic disorders.

DNA analysis of blood cells determined those subjects who had no inherited risk for (or who weren’t genetically prone to) hematologic diseases. The 160 genes that are known to be mutated in hematologic cancers were analyzed in the subjects without genetic risk. The results? While somatic mutations were rare in those under age 40, this significantly increased with aging as evidenced by the following results:

  • Age 60–69: 5.6% had somatic mutations
  • Age 70–79: 9.5% had somatic mutations
  • Age 80–89: 11.7% had somatic mutations
  • Age 90–108: 18.4% had somatic mutations

In these subjects, somatic mutations in the hematopoietic stem cells (the blood-producing cells) of bone marrow were not only associated with an increased risk of hematologic cancers with aging but also with all-cause mortality (death from any cause), heart disease, and stroke. These somatic mutations are found in bone marrow and blood cells, and this finding (predisease) on blood screening, for example, actually has a term: clonal hematopoiesis of indeterminate potential, or CHIP for short. In other words, somatic mutations (as evidenced by the detection of CHIP) in hematopoietic stem cells and the conditions associated with these mutations—cancer, heart disease, stroke, and more—increase as you age and are associated with your risk of death. The more of these abnormal cells, the more likely it is that you will die from a plethora of diseases.

The upshot? If confirmed by other studies, this is a VERY big discovery. Why? While we’re busy as doctors chasing cholesterol and other blood level or serum markers, the percentage of your cells that have mutated may turn out to be a far more important indicator of your overall health and risk of dying. If that’s the case, then your cumulative exposure to things like radiation, the sun, chemicals, electromagnetic fields, and the like may be an important metric that determines your health. On the other hand, we all have robust cellular machinery to repair these cell mutations. In people that live to be 100, it’s been noted that their cell repair mechanism doesn’t get degraded as much as they age. Hence, finding ways to keep that cell repair machinery revved up may be the next wonder drug, regardless of exposure levels!

Category: Latest News

Leave a Reply

Your email address will not be published. Required fields are marked *

8 thoughts on “Mutated Stem Cells in Our Bone Marrow Associated with Disease and Mortality

  1. Suzanne Hudson

    I love to read these promising discoveries! Life is fascinating. Generations to come will reap the reward of these fascinating studies!

    1. Regenexx Team

      Suzanne,
      We do as well!

  2. James Pass

    Let’s hope this wonder drug if discovered will see the light of day. IMO big pharma is not looking for cures, just sustainability of their customers. Cures of anything threatens their businesses…

  3. MARY KOOREY

    DO YOU HAVE ANYONE IN AUSTRALIA THAT IS AS GOOD AS YOU

    1. Regenexx Team

      MARY,
      Dr. Kevin Boundy is our Regenexx Provider in Australia. He treats knees, hips and spine, exclusively. Here is the website: http://www.nssm.com.au/

  4. DavePG

    Hello,
    Have you seen or reviewed the new book “Stem Cell Revolution, discover 26 disruptive technological advances in stem cell activation” by Joseph Christiano, a new book I just saw in my public library. The author is not an MD or DO, so I’m wondering, from the orthopedic perspective, if this book is worthwhile or not. Thanks.

    1. Regenexx Team

      DavePG,

      Not familiar with the book…

  5. Koluxe

    Having studied more than 1200 stem cell counts after bone marrow aspiration for different disease and stem cell treatments our analysis shows the same thing you state:

    Bone marrow aspirate may be the best predictor for overall health and risk of death; especially for ALS or Cerebral Palsy bone marrow stem cell counts are definitive predictors for the success of the procedure and overall survival. This might be true also for ICU patients, that would be a most interestingt study.

    In addition the probability, the stem cell procedure will be successful or not in general can be read from the bone marrow stem cell count (talking about CD 34).

    Maybe at one point of time we should do a bone marrow aspirate first before we do a stem cell procedure and with certain low counts just not do the stem cell procedure. This would increase our credibility, I think

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.