Is There a Way to Protect Stem Cell Loss as We Age?

by Chris Centeno, MD /

The Fountain of Youth dates back to the time of the Greeks and then to the Spanish conquistadors who searched the Caribbean for the mythical place where the water of life would reverse aging. These days our search has turned inward, where we look for chemical or cellular pathways to stop or reverse cell aging or loss. One such study was just published that focused on reducing the natural loss of stem cells as we age. As a physician, perhaps the most exciting thing about the research is that it used an already existing medication that was discovered in bacteria on Easter Island. Let me explain.

How Stem Cells Work  

When the cells in your body become damaged, they are replaced by local stem cells that live in that tissue. For example, if a cartilage cell in the knee is dying, a stem or progenitor cell that lives next door will detect it and begin the steps to replace the sick cell. This is called differentiation. How does this work?

First, an adult stem cell nearby gets wind of a chemical signal released by the dying cell. The stem cell then makes two copies of itself; one cell will be kept in reserve for future use (replacing the stem cell being used for the repair job), and the other cell will replace the dying cell (this is called a progenitor cell). The progenitor cell receives many local clues from the surrounding cells, including the type of forces present (compression, stretching, sliding, etc.), the chemicals in the environment (inflammatory, pro-growth, status quo, etc.), and the cell type that surrounds it. Those signals transform the progenitor cells into the exact cell type that needs to be replaced. When the repair job is complete, remember that we still have one stem cell in reserve. This cell then goes into wait-and-see mode, waiting to spring into action at a future date when more damage is detected. Watch the video below to see visuals of this process.

When this fine balance between cell death or damage and differentiation is disrupted, problems can ensue. Unfortunately, even just the natural process of aging causes stem cells to die off and decreases their ability to regenerate damaged tissues. And one of those keys to the process of aging is found in the mTOR pathway

Defining the mTOR Pathway and Rapamycin

Mammalian target of rapamycin (mTOR) is quite a mouthful, but what you need to understand is that mTOR is a large protein that promotes and regulates the growth of cells, and it is a key pathway to the process of aging. Problems with the mTOR pathway have been associated with a variety of diseases, including diabetes and genetic disorders, and it is extensively studied in seeking treatments for cancer. The new study also suggests that repeated, or chronic, activation of that mTOR pathway as we age may be responsible for stem cell loss.

Rapamycin is now an immunosuppressant drug, which means it prevents the immune system from doing its job. While Ponce de León was searching for the water of life in Bimini, rapamycin was being produced by bacteria on Easter Island (halfway across the world)! In fact, the compound, which was discovered in a 1972 expedition, was named after the native name of the island, which was Rapa Nui. So maybe all of those big statues were trying to tell us something!

Why would we want to inhibit the immune system? Rapamycin is commonly prescribed following organ transplants, for example, so the immune system doesn’t target the donor organ as a foreign invader and attack it. Autoimmune conditions, such as Hashimoto’s thyroiditis and rheumatoid arthritis, are other examples where immune suppression might be beneficial depending on the severity. Rapamycin is also sometimes used, more controversially, on drug-eluting stents, which are devices that support a vessel that has been dilated to improve blood flow.

Now the new study suggests that rapamycin may not only prevent but also reverse stem cell loss caused by the mTOR pathway as we age. Let’s review.

Rapamycin May Prevent Stem Cell Loss as We Age

The new study consisted of mice (flies were also used) that were the human equivalent of 50 years old or older, all of which had experienced a decline in stem cell counts. The mice were treated with the drug rapamycin, and in all cases, the stem cell counts recovered. Researchers determined the rapamycin reversed the loss of stem cells in the aging mice (specifically in the muscle and trachea, as well as in the intestines of the flies). How? They concluded that the prevention of stem cell loss can be accomplished by inhibiting or blocking the repeated activation of mTOR signaling that occurs with age or injury, and rapamycin treatment was the vehicle that accomplished this.

Does This Mean I Should Be Taking Rapamycin to Protect My Stem Cells?

No, you shouldn’t be taking rapamycin to protect stem cells or slow aging. Despite the promising findings in the study, this doesn’t mean we should all rush out and get prescriptions for rapamycin. While this study may be the first of more to come to attempt to find additional solutions for stem cell loss in humans as we age, rapamycin is riddled with side effects that would likely negate its benefit to stem cells. Most of us, for example, wouldn’t want the harmful effects that would go along with blocking our immune system from doing its job.

The upshot? What’s really fascinating about this study is that it involves an existing drug. Also that it may be possible to find other ways to inhibit the mTOR pathway that are nontoxic and have fewer side effects. While Ponce de León, the Spanish governor of Puerto Rico, was searching the Caribbean for the Fountain of Youth, turns out it may have actually been located where all of those giant statues guarded the shore of an obscure island in Polynesia!

Category: Latest News

Leave a Reply

Your email address will not be published. Required fields are marked *

1 thought on “Is There a Way to Protect Stem Cell Loss as We Age?

  1. Deby Pierce

    Very interesting and funny! Thanks

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.