Stem Cell Therapy Review Journal: Where You Get Your Stem Cells Matters

By Chris Centeno, MD /

Receive a Regenexx® Patient Info Packet by email and learn why it's a superior regenerative solution.

As a pioneer in the orthopedic use of autologous stem cells, I’m often asked to shed light on the increasingly confusing information out there, and to that end have put together a “Stem Cell Therapy Review Journal “.

One of the most common questions asked by asked by patients and doctors alike is why our stem cell lab doesn’t consider using adipose derived stem cells as the primary source of MSC’s for orthopedic purposes.  After all, it would seem far easier to just take a little fat aspiration in a mini-liposuction procedure rather than performing a bone marrow aspiration (where we derive cells for orthopedic use).  The problem is that source of adult stem cells is very important to their function.

Stem cells come in many shapes, sizes, and types.  Some are more differentiated than others, while some are less differentiated.  Take for example adipose derived mesenchymal stem cells (MSC’s).  When these adult stem cells (MSC’s) are compared to bone marrow derived MSC’s for orthopedic uses such as bone or cartilage repair, bone marrow derived MSC’s beat the pants off fat derived stem cells  (Vidal et al, Niemeyer et al, Jakobsen et al).  The reason is that many adult stem cell types are already pre-differentiated down a certain lineage (in this case bone marrow MSC’s are more differentiated down orthopedic lineages such as cartilage and bone).  Fat derived MSC’s are good at becoming more fat, or assisting the repair of wounds to the dermis or subcutaneous tissues.  As a result, adipose derived MSC’s are great for cosmetic uses, modulating the inflammatory response, and assisting in the repair of acute nerve injury.  Is it possible to select MSC’s out of adipose tissue that might be better for orthopedic applications?  It may be, as a recent paper by Jiang discusses.  However, you likely still have a fish out of water.

This same rule holds true for many other tissues.  As an example, synovium derived MSC’s are about 20% better for orthopedic uses than bone marrow derived MSC’s.  This is because, they are simply closer to the area in need of repair (in this case joint cartilage).  And so it goes, cardiac muscle derived progenitors are a little better at cardiac muscle repair, etc… The closer the stem cells are to the target tissue in need of repair and the closer their function in the body is to the repair process for that tissue, the better.

One practical caveat to the source rule may be yield.  Yield is how many cells you can get from an area for therapy.  As an example, while periosteum stem cells from baby teeth may be very potent, you’re not going to isolate many stem cells from such a diminutive source.   As a concrete example, synovial fluid can yield MSC’s for cartilage repair, but the numbers isolated directly from the fluid are usually well below the number needed to repair cartilage (or the cartilage would just repair itself).  The same generally holds true for many other cell types derived from the tissues they serve.  One way around this issue is culture expansion, or growing cells in culture to bigger numbers.  This is how the body handles replacement of stem cells when they are used for daily repair and maintenance; it simply makes more cells.  This process can amplify stem cells about 100-1,000 times more than the number harvested.

Here’s a summary of some common stem cell sources (and a few not so common) that seem to be helpful in certain conditions:

  • Adipose derived stromal vascular fraction- These are cells that can be obtained by performing an aspiration of fat during liposuction.  This adipose tissue is then processed in a simple lab or using a commercially available machine.  About 1 in 100 of these cells is a mesenchymal stem cell, so it’s a dilute concentration of stem cells rather than isolated stem cells.  These cells appear to be helpful for cosmetic, neural, and anti-inflammatory properties.
  • Bone marrow derived cells:  These cells can be concentrated in a commercially available centrifuge or by a lab to produce a bone marrow aspirate concentrate (BMAC) or isolated and grown in a more sophisticated lab to bigger numbers.  They are appropriate for many uses including cardiac, pancreas, and orthopedic uses (as well as others).
  • Cardiac muscle derived progenitors:  These are either progenitor cells (stem cells that are more differentiated) or mesenchymal stem cells that are obtained by cardiac muscle biopsy.  Since they are cardiac specific, they would be appropriate for cardiac use.
  • Synovial derived mesenchymal stem cells-  These are orthopedic MSC’s that are specific for cartilage repair and are derived from either a synovial tissue biopsy or a synovial fluid draw.

It’s important to note that almost any tissue can yield stem cells or progenitors.  As an example, MSC’s have been obtained from periosteum, cardiac muscle, fat, dermis, blood vessel walls, and marrow, just to name a few.  You can even get stem cells from the endometrial tissue obtained from menstrating women.  In summary, the closer the stem cell is to its original location or function in the body, the better the stem cell is at repairing that specific area.  So in stem cells, source matters.

Chris Centeno, MD

Regenexx Founder

Chris Centeno, MD is a specialist in regenerative medicine and the new field of Interventional Orthopedics. Centeno pioneered orthopedic stem cell procedures in 2005 and is responsible for a large amount of the published research on stem cell use for orthopedic applications.
View Profile

Get Blog Updates by Email

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Regenerative procedures are commonly used to treat musculoskelatal trauma, overuse injuries, and degenerative issues, including failed surgeries.
Select Your Problem Area
Shoulder

Shoulder

Many Shoulder and Rotator Cuff injuries are good candidates for regenerative treatments. Before considering shoulder arthroscopy or shoulder replacement, consider an evaluation of your condition with a regenerative treatment specialist.

  • Rotator Cuff Tears and Tendinitis
  • Shoulder Instability
  • SLAP Tear / Labral Tears
  • Shoulder Arthritis
  • Other Degenerative Conditions & Overuse Injuries
Learn More
Cervical Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Knee

Knees

Knees are the target of many common sports injuries. Sadly, they are also the target of a number of surgeries that research has frequently shown to be ineffective or minimally effective. Knee arthritis can also be a common cause for aging athletes to abandon the sports and activities they love. Regenerative procedures can be used to treat a wide range of knee injuries and conditions. They can even be used to reduce pain and delay knee replacement for more severe arthritis.

  • Knee Meniscus Tears
  • Knee ACL Tears
  • Knee Instability
  • Knee Osteoarthritis
  • Other Knee Ligaments / Tendons & Overuse Injuries
  • And more
Learn More
Lower Spine

Spine

Many spine injuries and degenerative conditions are good candidates for regenerative treatments and there are a number of studies showing promising results in treating a wide range of spine problems. Spine surgery should be a last resort for anyone, due to the cascade of negative effects it can have on the areas surrounding the surgery. And epidural steroid injections are problematic due to their long-term negative impact on bone density.

  • Herniated, Bulging, Protruding Discs
  • Degenerative Disc Disease
  • SI Joint Syndrome
  • Sciatica
  • Pinched Nerves and General Back Pain
  • And more
Learn More
Hand & Wrist

Hand & Wrist

Hand and wrist injuries and arthritis, carpal tunnel syndrome, and conditions relating to overuse of the thumb, are good candidates for regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Hand and Wrist Arthritis
  • Carpal Tunnel Syndrome
  • Trigger Finger
  • Thumb Arthritis (Basal Joint, CMC, Gamer’s Thumb, Texting Thumb)
  • Other conditions that cause pain
Learn More
Elbow

Elbow

Most injuries of the elbow’s tendons and ligaments, as well as arthritis, can be treated non-surgically with regenerative procedures.

  • Golfer’s elbow & Tennis elbow
  • Arthritis
  • Ulnar collateral ligament wear (common in baseball pitchers)
  • And more
Learn More
Hip

Hip

Hip injuries and degenerative conditions become more common with age. Do to the nature of the joint, it’s not quite as easy to injure as a knee, but it can take a beating and pain often develops over time. Whether a hip condition is acute or degenerative, regenerative procedures can help reduce pain and may help heal injured tissue, without the complications of invasive surgical hip procedures.

  • Labral Tear
  • Hip Arthritis
  • Hip Bursitis
  • Hip Sprain, Tendonitis or Inflammation
  • Hip Instability
Learn More
Foot & Ankle

Foot & Ankle

Foot and ankle injuries are common in athletes. These injuries can often benefit from non-surgical regenerative treatments. Before considering surgery, consider an evaluation of your condition with a regenerative treatment specialist.
  • Ankle Arthritis
  • Plantar fasciitis
  • Ligament sprains or tears
  • Other conditions that cause pain
Learn More

Is Regenexx Right For You?

Request a free Regenexx Info Packet

REGENEXX WEBINARS

Learn about the #1 Stem Cell & Platelet Procedures for treating arthritis, common joint injuries & spine pain.

Join a Webinar

RECEIVE BLOG ARTICLES BY EMAIL

Get fresh updates and insights from Regenexx delivered straight to your inbox.

Subscribe to the Blog

FOLLOW US

Copyright © Regenexx 2019. All rights reserved. | Privacy Policy

*DISCLAIMER: Like all medical procedures, Regenexx® Procedures have a success and failure rate. Patient reviews and testimonials on this site should not be interpreted as a statement on the effectiveness of our treatments for anyone else.

Providers listed on the Regenexx website are for informational purposes only and are not a recommendation from Regenexx for a specific provider or a guarantee of the outcome of any treatment you receive.